The SABR Model: Explicit Formulae of the Moments of the Forward Prices/Rates Variable and Series Expansions of the Transition Probability Density and of the Option Prices
نویسندگان
چکیده
The SABR stochastic volatility model with β-volatility β є (0,1) and an absorbing barrier in zero imposed to the forward prices/rates stochastic process is studied. The presence of (possibly) nonzero correlation between the stochastic differentials that appear on the right hand side of the model equations is considered. A series expansion of the transition probability density function of the model in powers of the correlation coefficient of these stochastic differentials is presented. Explicit formulae for the first three terms of this expansion are derived. These formulae are integrals of known integrands. The zero-th order term of the expansion is a new integral formula containing only elementary functions of the transition probability density function of the SABR model when the correlation coefficient is zero. The expansion is deduced from the final value problem for the backward Kolmogorov equation satisfied by the transition probability density function. Each term of the expansion is defined as the solution of a final value problem for a partial differential equation. The integral formulae that give the solutions of these final value problems are based on the Hankel and on the Kontorovich-Lebedev transforms. From the series expansion of the probability density function we deduce the corresponding expansions of the European call and put option prices. Moreover we deduce closed form formulae for the moments of the forward prices/rates variable. The moment formulae obtained do not involve integrals or series expansions and are ex-
منابع مشابه
Some Explicitly Solvable SABR and Multiscale SABR Models: Option Pricing and Calibration
A multiscale SABR model that describes the dynamics of forward prices/rates is presented. New closed form formulae for the transition probability density functions of the normal and lognormal SABR and multiscale SABR models and for the prices of the corresponding European call and put options are deduced. The technique used to obtain these formulae is rather general and can be used to study oth...
متن کاملNumerical Methods of Option Pricing for Two Specific Models of Electricity Prices
In this work, two models are proposed for electricity prices as energy commodity prices which in addition to mean-reverting properties have jumps and spikes, due to non-storability of electricity. The models are simulated using an Euler scheme, and then the Monte-Carlo method is used to estimate the expectation of the discounted cash-flow under historical probability, which is considered as the...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملForward and Future Implied Volatility
We address the problem of defining and calculating forward volatility implied by option prices when the underlying asset is driven by a stochastic volatility process. We examine alternative notions of forward implied volatility and the information required to extract these measures from the prices of European options at fixed maturities. We then specialize to the SABR model and show how the asy...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کامل